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Free motion of an axisymmetric solid is considered when its center of mass 
undergoes a spatial displacement along a curve of double curvature, and a 
rotational motion about this center of mass is also taken into account. The 
equations of motion are constructed using the tangential and normal corn - 

ponents of the drag, the Magnus force and the weight of the solid as well as 
the tilting (restoring) moment, Magnus force moment, axial and equatorial 
damping moments. Conditions are established under which the deviations of 
the symmetry axis of the body from the tangent to the trajectory of its center 

of mass will not exceed some specified values over the given interval of time. 

The freely moving solid has the rigidly attached C&l5 -axes which represent 
the principal central axes of its inertia ellipsoid. The ellipsoid is a solid of revolution, 
and Cg is its axis of symmetry. The center of mass moves along a curve of double 
curvature: its velocity vector forms an angle y with the vertical CXY plane, and 
an angle 9 with the horizontal plane (see Fig. 1). The figure also depicts the velo - 
city semiaxes CX’Y’Z’, the velocity axes Cx’Y& [ 11, the intermediate axes 

CW6’, the Euler angles 6, cp, @ and the angles 6i, 6,, 6s which are used to 
define the position of the C&J~ axes relative to CX’Y’Z’. 

Using the accepted assumptions (see e.g. [l ,2 I), we apply the following forces to 
the body: the weight Q, the tangential H, and normal R, components of the 
drag, and the Magnus force R,, and we have 

In addition we apply to the body the tilting moment (Bb sin 6) if the center of pres- 
sure is above the center of mass, or the stabilizing moment (- B B sin 8) otherwise, the 

Magnus force moment ML = th,R L (with the sign chosen similarly ),and damping 
moment (- A xp, - 2Bxq, - 2Bxr). Here A and B denote the axial and equa - 

torial moments of inertia of the body, u is the velocity of the center of mass X, X, fi 

and cL are variable proportionality coefficients, It, is the shoulder of the Magnus 

force, p is the angular velocity of rotation of the body about its symmetry axis, and 
q, T are the projections of the angular velocity of the symmetry axis of the body on 

the Cq and Cc axes. 
The equations of motion of the center of mass in terms of the projections on the 

CX’Y’Z’ axes are 

rnv = -XT - Q sin 8, nw0’ = RN cos $ + R, sin $ - 

Qcos0, mvy’ cos 8 = R, sin 1p - R, cos II, 
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Taking into account the fact that ~cos~==~~+ . . . . 6sin$=6,+... 

(obtained from the spherical triangle E X’X,), we have 

9’ = 2ys1 f- 2@, - @-’ co.3 e + . .* y’ cos 8 = 2/h&T - 2Ebl + . , . (1) 
21-1 = (8R, / ad), (m)-l, 25 = cLpnl-l 

where the repeated dots denote the third and higher order of smallness terms in &and &. 

The equations of rotational motion are the dynamic !Zuler equations 

Ap’ = --Au, Bq’ + (B - A)rp = *ML CDS ‘p - 2Bq + BP sin 6 sin cp 

Br’ + (A - B)pq = T M, sin cp - 2Bxr & B~!I sin S cos ‘p 

p = (6,’ + e’) sin 6, + 6,’ - y‘ sin (6, + B) cos S,, q = (6,’ + @‘@in 6, ~086, - 

6,’ co9 6, + y’ cos (6, + @3) cos 6, + y’ sin (6, + 8) sin 6, sin S,, r = 

(6,’ + 9’) cos 6, cos 8, + 6,’ sin 6, + y’ cos (6, + 8) sin 6, + 

y’ sin (6, + 8) sin 6, co9 6, 

Integrating the first equation we obtain 

f 

P=Po@XP - 
( \ 

’ Xdt\ 

0” I 

while the second and third equations become, after substituting P, q and 7, performing 

Fig. 1 
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the necessary manipulations and expanding into trigonometric series near & = 6, = 0, 
with ( 1) and equations obtained by differentiating ( 1) with respect to time all taken 
into account, 

&‘* - 2&’ -+- 2b&’ - ~6, + et& = RZ + ‘r, 

u = a $ E, b = x + p, c = +fi - 2~’ - 4xp - 4a& e = -+_Y - 2F;’ - 4x& - 4ap 

a = + + p, v = hLc~vB-‘, RI = 2xgv-” CO8 8 - g (v-1 cos e) ) Rs = -2ugv-’ co9 8 

where Y and 7ys denote the nonlinear terms in the expansions. 
Let us consider, together with ( 2 ) , a reduced system of equations 

81 * + 2ati2’ + 268,’ - ~6~ - et3 2 = 0, t&*’ - 2a&’ + 2b&,’ - cb + e& = 0 (3) 

which admits the particular solution 

6, = 6, = 0, &i = 6,’ = 0 

corresponding to a helical motion of the symmetry axis of the body along the tangent to 
the trajectory of the center of mass. The system ( 2 ) differs from ( 3 ) in the appearance 
of the nonlinear terms Yz and nt, and of continuously acting per~rbatio~ RI and 

R, caused by lowering of the tangent. 
Let us determine the conditions of stability of the unperturbed motion ( 4) both in 

the presence and absence of the continuously acting perturbations &, and R, and 
nonlinear terms ‘yr and \Y, . When the coefficients are constant, the character - 
istic equation of the system ( 3) is 

XL + 4bhs -j- (4b2 - 2c + 4as)hs - 4 (bc _t ea)k + 9 + $ = 0 

Applying the Hun&z criterion, we obtain the following conditions for the asymp- 
totlc stability of the solution ( 4) : 

a) If C> 0 (body withoutfins),tbeu 

as-c>O, e<O, Ba(l---a)< $ dBa(l+a). 
I I 

6= 
1/ i+<<r 

b) If c<O (finnedbody),then 

e-20, - 2~(o+I)<$<2~(6--~f, ICI > ~+~(~~, a>i 

Therefore in the case a) the free solid must have a considerable angular velocity 
about its symmetry axis, while in the case b ) the modulus of the coefficient c should 
be large. 

The conclusions remain valid when the nonlinear terms Y1 and YI. are taken 

into account [ 3 1, If on the other hand we take into account the continuously acting 
pe~rbatio~ Rx and R,, the unperturbed motion ( 4) will be simply stable f 31. 

When the coefficients are all variable, we introduce the function 
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where h is a parameter to be defined. Clearly, V (t, 0, 0, 0, 0) = 0 and V is a 
positive definite function provided that the generalized Silvester conditions [4] 

ha - c > kr > 0, a2 - c > k, > 0, a h E ]2a (1 - a), 2~ (I + o)] (5) 

hold. The time derivative 

y’ = -_[4b&” -k 2 (bh - e)&’ b, - (he -/- h’ - c*)&s + 4b8,‘r - 2 (bk - 
e)6,‘$ - (he + Au’ - c’)Bis] 

will be, by virtue of Eqs. (3 ), negative definite if 

-(k-i-ha’-cC’)>ks>O, a’a+ea’+ bc’>k,>O (6) 

Moreover, a positive definite function V and a negative definite V’ can be con- 
structed by virtue of Eqs. ( 3) with the help of one and the same parameter h only when 

e < 0, 2a ( l----b-+ <--+<,a ) ( l+a_-$ > 
e 2 0, --2a(o+l-+ 

) 
<+<%a a-i-f 

( > 

where c < 0 for a body without fins and e > 0 for a finned body. 
Integrating the first inequality of ( 6) over the interval [0, T] and taking the 

first inequality of ( 5 ) into account, we have 

T 

O<k,<la-c<<Xao-cco-kk,T- A edt 
5 
0 

In this case the partial derivatives ~Vh5,, avlai3,, avla8;, avla8,’ are bounded in 
the interval [0, T] provided that 1 6i 1 < 8, 1 6i’ 1 < 8, i = 1, 2 where e > 0 is 
an arbitrarily small preassigned number. Consequently we find, in accordance with the 

Malkin theorem [ 3 ] that for the interval [O, T] the representative point (61, 62, a,‘, 
6s.) occurring within the region Vs = V (0, &o, 46, 6,,‘, 6,,‘) at the initial instant 

of time, will remain there for t E [O, 2’1 provided that I Ri I < C @A I bo I < 
tl 6% I6iO’ I <q (4 (i = 1, 2). 

If the interval [O, Tl is chosen in accordance with the second inequalities of ( 5) and 
( 6 ) , then the solution of ( 2 ) will not emerge, in the given interval, from the closed 
region VO and this means that the unperturbed motion ( 4) is stable in the interval 

10, T] in the presence, as well as the absence of continuously acting perturbations 
and nonlinear terms. In this case the system ( 2 ) can be linearized. Introducing the 

complex variable W = & + i6,, we can write the linearized system in the form of 

a single equation 

W” - 2 (ia - b)W - (c - ei)W = RI f iR, (7) 

When c>O, Eq. ( 7) contains a large parameter no = a,, and when c<O a 

large parameter ] co ] = ] c (0) ] , consequently its solution can be constructed using 

the asymptotic method [5]. We have, with the accuracy to within the values of A. 
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1 

where x = us-l inthefirstcaseand A= Ical-’ in the second case, 

t 

TV=- & o [ s crexp (Ih~+ia--Iqdt+C*expX 

r 

5 (-t?bhr+ia-b)dt 
1 

- $“;f 
0 

ra = [(aa - c - P - b’) + i (2ba + c + 4’)15-’ 

which can be transformed into the following explicit expression : 

,=~[C,exp(S(~-~-a,si*~)~~+~~=(*+.cos~)dl--9)+ 
0 0 

t 

C20XP : 
(St 

- b + aa sin $- 
) 

dt + 

0 

t 

i ai 
S( 

--acos+)dt -+)I- ‘;t;; 

0 

tg cp = (2be + e + a*)(us - c - bs - b’)-1 

For the solution to be bounded, we must have %I? > 0, Imd z 0, and this yields 
as - c> ba + b’ 

e-co* 2a (1 -0) (I-&)< - g,, (1 + .,(I _&) 

e 20, --2a(u+i)(i--)<%<aa(~-i)(i_-) 

In addition, the particular solution and Ci, Ca must be sufficiently small in modulo, 
and this will only be the case when Ri and RI in the interval [O, ?‘I and the initial 

perturbations are all sufficiently small. Then the deviations of the symmetry axis of the body 

from the tangent to the trajectory of its center of mass will also be small in the interval [O, Tl. 
Thus the conditions of boundedness of the solution of [ 7 ] represent the necessary con- 

ditions for thestability of theunperturbed motion ( 4 I,, while the sufficient conditions are 

represented by the conditions of positive definiteness of the function V and negative 

definiteness of time derivative Vi by virtue of the simplified system of equations ( 3 ) . 
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